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Abstract Molecular marker-quantitative trait associ- 
ations are important for breeders to recognize and 
understand to allow application in selection. This work 
was done to provide simple, intuitive explanations of 
trait-marker regression for large samples from an F 2 
and to examine the properties of the regression es- 
timators. Beginning with a ( -  1, 0, 1) coding of marker 
classes and expected frequencies in the F2, expected 
values, variances, and covariances of marker variables 
were calculated. Simple linear regression and regression 
of trait values on two markers were computed. The sum 
of coefficient estimates for the flanking-marker re- 
gression is asymptotically unbiased for an included 
additive effect with complete interference, and is only 
slightly, biased with no interference and moderately 
close (15 cM) marker spacing. The variance of the sum of 
regression coefficients is much more stable for small 
recombination distances than variances of individual 
coefficients. Multiple regression of trait variables on 
coded marker variables can be interpreted as the prod- 
uct of the inverse of the marker correlation matrix R and 
the vector a of simple linear regression estimators for 
each marker. For no interference, elements of the corre- 
lation matrix R can be written as products of correla- 
tions between adjacent markers. The inverse of R is 
displayed and used to illustrate the solution vector. 
Only markers immediately flanking trait loci are ex- 
pected to have non-zero values and, with at least two 
marker loci between each trait locus, the solution vector 
is expected to be the sum of solutions for each trait locus. 
Results of this work should allow breeders to test for 
intervals in which trait loci are located and to better 
interpret results of the trait-marker regression. 
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Introduction 

Molecular markers are beginning to show promise in 
helping plant breeders develop inbreds for improved 
hybrid performance. Often the breeder begins with an 
F 1 of two inbreds and either backcrosses to a recurrent 
inbred or sells to get an F 2 population and then makes 
selections among individuals by evaluating performance 
in hybrid cross combination. Molecular markers can be 
used in backcrossing to locate genetic factors and esti- 
mate the size of their effect (Lander and Botstein 1989). 
Population improvement or inbred development by 
selection might be enhanced using molecular marker 
information in a selection index (Lande and Thompson 
1990; Zehr et al. 1992; Dudley 1993). It is therefore 
necessary to develop methods of relating phenotypic 
trait data to molecular marker data for both of these 
marker-assisted breeding methods. 

The initial method used to associate phenotypic trait 
data with marker genotypic classes was by contrasting 
homozygous class means using t-tests, as proposed by 
Soller et al. (1976) and illustrated by Stuber et al. (1987). 
Lander and Botstein (1989) and Knott and Haley (1992) 
identified recognizable shortcomings in the single-locus 
analyses: a downward bias in estimated effect, loss of 
power in significance tests, high probability of false 
positives when tests are conducted at many marker loci, 
and inability to estimate location of genetic factors. 

Maximum likelihood estimation or quasi-maximum 
likelihood methods provide a somewhat more sophisti- 
cated analysis technique to solve some of the disadvan- 
tages of the t-tests. Weller (1986) applied a combination 
of the method of moments and maximum likelihood to 
estimate means of marker classes and the location of a 
genetic factor in an F 2 of a cross between inbred lines. 
Lander and Botstein (1989) and Knapp et al. (1990) 
improved upon this by proposing analyses for pairs of 
markers that flank a genetic factor. Luo and Kearsey 
(1989, 1991) presented a method similar to Weller's for 
F 2 and backcross or doubled haploid populations. 
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More recently, Knott and Haley (1992) simulated data 
for an F 2 population to show that the use of adjacent 
(flanking) marker pairs improves the power for detec- 
tion of genetic factors, gives more accurate estimates for 
the effect and position, and makes the method less 
sensitive to violations of assumptions such as non- 
normality. 

Several authors have proposed using multiple re- 
gression ofphenotypic trait measurements on molecular 
marker variables to detect and estimate effects of genetic 
factors. Knapp et al. (1990) introduced linear models 
useful for estimating means of genotypes for backcross 
and F 2 populations, and they illustrated coding the 
independent variables for marker classes, equating ex- 
pected values of associated regression coefficients to 
parameters, and interpreting the regression coefficients 
to estimate effect and location of a genetic factor. Marti- 
nez and Curnow (1992) used regression on marker allele 
frequencies for a backcross, minimizing the residual sum 
of squares by iterating hypothetical recombination frac- 
tion distances (t) from zero to the distance between 
markers. They stated that the residual sum of squares, 
RSS(t), behaves in a way approximately inversely pro- 
portional to the LOD score of the Lander and Botstein 
(1989) maximum likelihood method of interval map- 
ping. They also illustrated how using flanking marker 
methods with 2 true effects could also result in a "ghost" 
effect, and suggested regression with three or more 
markers to alleviate this situation. Haley and Knott 
(1992) illustrated a similar regression method for F 2 
data and showed that results are nearly identical with 
those of maximum likelihood. Moreno-Gonzalez 
(1992a, 1992b) further developed regression models for 
backcross and F 2 generations from the cross of two 
inbred lines, and used simulation of a backcross popula- 
tion to show that stepwise multiple regression allows 
one to detect relatively small additive and dominance 
effects for independently segregating genetic factors. The 
wealth of statistical models presented by Moreno-Gon- 
zalez illustrates the flexibility and general applicability 
of regression for molecular marker analyses. 

Maximum likelihood and multiple regression 
methods have many similarities, but regression has ad- 
vantages in its computational simplicity. Martinez and 
Curnow (1992) stated that if the error term in a re- 
gression equation were a normally distributed random 
variable rather than one from a mixture of normal 
distributions, the regression method would be maxi- 
mum likelihood. They cited the ability to study perform- 
ance of procedures algebraically as an advantage for the 
regression method. Haley and Knott (1992) derived the 
relationship in test statistics between the likelihood ratio 
test and the F test of regression and recommended 
regression as the method of choice, being less complex, 
computationally faster, and more general than maxi- 
mum likelihood. 

Our goal in this work is to simplify and extend the 
theory of the multiple regression approach to lend in- 
sight and explore properties of regression estimators. 

We concentrate in this paper on estimating additive 
effects from F 2 populations. The specific objectives of 
our work are: 

1. To provide a simple and intuitive interpretation of 
regression of trait variables on molecular marker data 
for a large F 2 population. 

2. To get unbiased (or nealy unbiased) estimates of the 
additive effect of a single genetic factor with flanking- 
marker regression estimators. 

3. To interpret the signs of regression coefficients as a 
guide to placement of genetic factors within intervals. 

4. To give theoretical variances of regression coeffi- 
cients so that properties of the estimators are better 
known and so that theoretical avenues rather than just 
simulation approaches may be pursued. 

Theory 

The proposed method involves computing the multiple 
regression of the trait phenotype (Y) onto the marker 
genotype, taking the frequency of one parent's alleles 
(0,1,2, or equivalently coding as - 1 , 0 ,  1) at each 
marker as the independent variate. The particular case 
for which these results apply is for a large sample of 
plants from an F 2 population derived from selfing the 
cross of two inbreds. Results extend easily to backcross 
populations. 

We begin by establishing some background in 
the relationships of variables for two markers, and 
we examine simple linear regression of a measured trait 
on a single marker variate. These results lead to a 
very intuitive explanation of the matrix solution of a 
multiple regression of trait phenotype on marker geno- 
type variables. Next, we present a method to estimate 
the effect of a trait locus with flanking markers by 
summing the two regression coefficients and, finally, 
give algebraic solutions and variances for multiple re- 
gression. 

The main properties of multiple regression can 
be illustrated by the simplest appropriate genetic 
model that has two markers (1 and 2) flanking a single 
trait locus. For this two-marker model there are 
four types of gametes produced when selfing the 
FI: MaM2, mlm2, Mlm2, mlM z with gamete freq- 
uencies (1 -c ) /2 ,  (1 -c ) /2 ,  c/2, and c/2 respectively. 
Here M 1 and ml are the two marker alleles at locus 1, 
M2 and m2 are the marker alleles at locus 2, and c is 
the recombination fraction between the two loci. These 
gametes, when randomly combined for the F 2 popula- 
tion, result in the frequencies in Table 1. From this 
table we can compute expectations and covariances 
for large samples from a n  F 2 population. The expected 
values of X 1 and X 2 are zero, each has variance 0.5, 
their covariance is (0.5-c), and their correlation is 
(1-2c). 
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Table 1 Geno types ,  frequencies,  and  con t ras t  coefficients for large- 
sample  F 2 popula t ions .  This  table i l lustrates a l inear cont ras t  coding 
for X 1 and  X 2 with coeff• - 1,0, and  1. 

G e n o t y p e  F requency  X~ X 2 Y Value  for 
l inear Y 
at locus 2 

M 1 M 1 M z m 2  (1 -- c)2/4 1 1 Yl 
M 1 M  x M 2 m  2 2c(1 -- c)/4 1 0 Y2 0 
M 1 m l m z m  2 c 2 / 4  1 -- 1 Y3 -- a 
M 1 m I M 2 M  2 2c(1 -- c)/4 0 1 Y4 
M I  m 1 M 2 m  2 [2(1 -- c) 2 + 2c2]/4 0 0 Y5 0 
M x m l m 2 m  2 2c(1 -- c)/4 0 - -  1 Y6 O: 
m 1 m l M 2 M 2  c2/4 -- 1 1 Y7 o: 
m l m  1 M 2 m  2 2 c ( 1 -  c)/4 -- 1 0 Y8 0 
m l m l m 2 m  2 (1 -- c)2/4 - - i  - -1  Y9 - - ~  

Simple linear regression on a single marker 

The simple linear regression of a measured trait, Y, on 
one of the loci, say X~, gives the estimated additive effect 
for that marker locus. If a true single genetic factor 
controlling trait Y is located a recombination distance 
c~ from locus 1, and the factor controlling Yhas alleles Q 
and q (thought of as in the same arrangements as M 2 and 
m 2 in Table 1), the simple linear regression of Y on X 1 
approaches, as n gets large, 

b = [(1 - c02 (Yl - Y9) ~- 2cl (1 - cl) (Y2 - Ys) 

+ (y3  - y7)3/2.  

This formula gives insight into estimation of additive 
effects with simple linear regression at each locus. If Y is 
exactly linear with true additive effect ~, and y~... Y9 are 
measured as deviations from the mean, then 

Y2 = Ys = 0 and Y~ = Y7 = - Y3 = - -  Y9 = ~" 

For this single factor with linear effect: 

1. V( ]7 )  = ~ 2 / 2  

2. Cov(X 1, Y)=  0.5 c~(1 - 2 c 0 ,  and 

3. b = ~(1 - 2Cl). 

This shows that the true additive effect of a trait is 
underestimated by a factor of ( 1 -  2q)  when simple 
linear regression is used to estimate ~. For example, if 
c 1 = 0.1, ( 1 -  2c 0 = 0.8, and we estimate the effect as 
80% of its true value. Flanking marker methods using 
maximum likelihood have been developed to alleviate 
this bias problem. Saturating the genome with markers 
to reduce map distances also diminishes this source of 
bias. Regression with two loci flanking the gene of 
interest can also reduce this bias, as shown below. 

Multiple regression for large samples from a n  F 2 

The multiple regression of a vector of n observations 
y (assumed to have mean zero) on molecular 

marker information X, as coded in Table 1, has model 
equation: 

y = X p + e ,  

where e is assumed distributed with mean 0 and variance 
0"2I, and with p marker loci, X has dimension n x p, and II 
has dimension p x 1. A solution vector of estimated 
regression coefficients is: 

b = (X'X)  - 1  X ' y .  

The marker map information is contained in the 
matrix X'X. We see from Table 1 that x/xj /n approaches 
the covariance of any two markers i and j  as the sample 
size n gets large. Thus, X'X/n approaches a variance- 
covariance matrix with elements (0.5-c~j), where c~j is the 
recombination fraction between loci i and j. We define 
ci~ = 0, and for two different loci, we assume c~j < 0.5. In 
X'X/n, each diagonal element approaches the variance 
of a marker (0.5), and off-diagonal elements go to the 
covariances (0.5-cij). The matrix 2 X'X/n approaches 
the correlation matrix R among the marker variables. 

R = (rij) = (1 - 2cij),  

where rii is the correlation between variables X~ and Xj. 
Therefore, information from X' X/n may be used to map 
marker loci. 

In the same way that 2X'X/n approaches a correla- 
tion matrix among marker variables, 2X'y/n approaches 
a vector a of correlations between markers and true 
genetic factors. Strictly speaking, for a single true addi- 
tive effect, 2X'y/n approaches the vector of marker-trait 
correlations multiplied by the true additive effect c~ if 
different from 1. Using Table 1 and single-gene trait 
genotypes QQ, Qq, and qq in place of M z M 2 ,  M 2 m 2 ,  

m2m2, we see that, as n gets large, X'y/n approaches the 
vector c~(0.5- ci),i = 1...p, where c i is the recombina- 
tion distance between locus i and the single true additive 
genetic factor (with effect ~). In general, then, the matrix 
2X'y/n approaches the vector a = ~ (1-2c~), and, as we 
saw earlier, a is the vector of expected values, as n gets 
large, for simple linear regression estimates for each 
marker locus. 

Multiplying these component parts, we have that 
b = (X'X)- 1 (X'y) approaches R -  1 a as n gets large. The 
solution vector for multiple regression is the product of 
the inverse of the matrix of estimated molecular marker 
correlations and the vector of simple linear regression 
estimators. The single-locus regressions, which are 
homozygous class mean comparisons, are adjusted by 
the relationships with other marker loci by (X'X) -1. 
Intuitively, the marker correlation structure (map infor- 
mation) is used to adjust the simple linear regressions in 
the solution vector for multiple regression. 

Although this solution appears simple, in practice 
there are difficulties in application. The regression coef- 
ficients may have high variances due to high correla- 
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tions between markers.  The multicolinearity among 
closely-spaced markers also causes difficulties in com- 
puting and interpreting the partial regression coeffi- 
cients. However,  the large-sample properties of the F 2 
allow a simple, intuitive interpretat ion of multiple re- 
gression on marker  variables. 

Large-sample F z regression with two markers  

Suppose there is a single additive genetic factor at Q, 
located between markers 1 and 2. We compute  the 
regression of trait values on the flanking marker  vari- 
ables as: 

b = (X'X) -1 X ' y ~ R -  la, 

fl 1 R = - 2c) 1 ' 

where c is the recombinat ion fraction between the 
marker  loci. The inverse of R is 

coefficients is obtained from (X'X)-10-2, with expecta- 
tion 2R-1  (a2/n) for the large F 2 case. The variance of 
each individual coefficient approaches 0 . 5 ( c - c 2 )  -1.  
(a2/n), and the variance of the sum approaches 
2(1 - c)-1 (Ge/n). Table 2 illustrates the effect of the size 
o fc  on these variances. Johnston (1984, p 241) uses this 
same example to illustrate the variability in estimates of 
individual partial regression coefficients in the presence 
of high multicolinearity in contrast  to the fairly precise 
estimation of their sum. 

It can also be noted that b 1/(bl + b 2 ) ~  c2/c gives an 
estimate of the position of Q within the marked  chromo- 
some segment. However,  for complementary  reasons to 
those given above, this estimate is likely to have a high 
variance and its properties will not  be explored further. 

The signs of the coefficients in a two-marker  re- 
gression can be used to indicate direction from the 
flanked interval to a linked single additive genetic factor. 
Suppose the true genetic factor is located at Q and that 
we have complete interference (no double crossovers). 
The theoretical solution vectors for the three possible 
arrangements are: 

R _ I  = 0 . 2 5 ( c _  c2 )_111  ( 2 c - 1 ) 1  
( 2 c -  1) 1 

We also have that 

I1 --2Cll 
a = ~  1 _ 2 C  2 , 

where c 1 and c 2 are the recombinat ion fractions, with Q, 
of loci I and 2, respectively. Finally, 

b =  b2 2 c 1 + ( C l - C 2 ) / c j  

as n gets large. 

An estimator of the true additive effect ~ can be 
obtained as the sum of the partial  regression coefficients 
from the f lanking-marker regression because (b 1 + be) 
approaches c~(1 - c)-  1 (1 - c 1 - c2) as n gets large. F o r  
complete interference and Q between loci 1 and 2 
(Cl + c2 = c), b I + b e approaches e. Thus, in the case of 
no double recombinat ion between loci 1 and 2, (b I + b2) 
is asymptotical ly unbiased for ~. Fo r  the case of no 
interference (c = c 1 + c a - 2CLC2) and e less than 0.15, 
there is only slight bias. For  example, e is estimated as 
0.98 of its true value for c 1 = c a = 0.10 when using the 
sum of the two partial  regression coefficients, and 0.94 of 
its value for cl = c2 = 0.15. 

The sum of the regression coefficients for flanking- 
marker  regression has a second impor tan t  property,  
namely that the theoretical variance of (b~ + b2) ap- 
proaches a value not  dependent  on c -  ~, but  on (1 - c)- 1, 
and therefore is bounded  no mat ter  how small c be- 
comes. The theoretical variance of each of the regression 

Case 1. True order  is M 1 - Q - Me, that is, e~ + c 2 = c. 

Lcl/cl 

This is the case in which (bl + b2) has expected value ~. 

Case 2. True order  is Q - M 1 - M2, that is, c I + c = c2. 

R -  i a = ot [ (1 c2)/(1 c) q 1 

L -  Cl/(1- c) /" 

Case 3. True order  is M 1 - M 2 - Q, that is, c 1 = c + c 2. 

R - l a  = o t [ O  c 2 / ( 1 - c )  ] 
- e l ) / ( 1  - e ) j "  

If ~ is positive, then for Case 1 both  coefficients are 
positive and for Cases 2 and 3, the positive coefficient is 
on the side closest to locus Q and the negative coefficient 
is on the side opposite Q. 

Table 2 Theoretical variances and covariance, in units of a2/n, for 
regression coefficients of flanking-marker regression for values of 
recombination fraction (c) between markers 

c Var(b 0 = Var(be) Cov(bl, b2) Var(b 1 + b2) ~ 

0.500 2.000 0.0 4.000 
0.250 2.667 - 1.333 2.667 
0.100 5.556 - 4.444 2.222 
0.010 - 50.505 - 49.495 2.020 
0.001 500.501 - 499.499 2.002 

aVar(bl + b2) = Vat (bl) + Var(ba) + 2 Coy (bl, b:) 
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Large-sample F 2 regression for blocks of markers 
and trait loci 

The above model for two markers will now be extended 
to include a block of several linked marker  loci and trait 
loci, and the restriction of no double crossovers will be 
lifted. The general solution for the no-interference, large 
F 2 regression is the expected value, as sample size gets 
large, of: 

b = ( X ' X ) -  ~ X ' y  

where X'X is the matrix of sums of squares and products 
of marker  allele frequencies, and X'y the vector of 
marker/ t rai t  sums of products. To examine the effect of 
double recombination, consider three loci (1, 2, 3) linked 
in this sequence, with recombination rates c,2 and c23. 
These are the smallest units of chromosome region to be 
considered, and these probabilities of recombination are 
defined net of any multiple crossovers. Effective recom- 
bination of 1 and 3 occurs when there is only one net 
crossover in the region between 1 and 3. Then 

c13 = [-1 - q2-I c23 + c12 [-1 - c23] 

= C12 "@ C23 - -  2C12C23 , SO that 

r13=[ l - -2c13]=l - -2c12- -2c23q-4c12c23  

= [1--2C12 ] [ 1 - - 2 c 2 3 ] = r 1 2 r 2 3 ,  

where r is the correlation between the subscripted loci. 
It may  be noted that  the influence of double cross- 

overs is to introduce product  terms in c. Hence, this 
model will be referred to as multiplicative, in contrast to 
the model for complete interference. It can be shown 
that  in general the correlation of two loci is the product  
of the stepwise correlations between the loci that  sepa- 
rate them. This allows the matrix of marker correlations 
R to be written, a typical non-diagonal  term of which is 

j - 1  

Yi j :  H ri,i+l" 
i = l  

Appendix 1 contains the matrix R for the multiplicative 
model. 

Solution of the equations p = R -  ~ a starts with find- 
ing the inverse of R. The inverse has terms of three 
distinct types, the first and last differing from the re- 
mainder along the leading diagonal, and is given in 
Appendix 1. There are off-diagonal terms only in posi- 
tions immediately adjacent to the diagonal, all other 
entries being zero. More formally, the three non-zero 
terms in each row correspond to entries ( i -  1, i), (i, i), 
and (i, i + 1) and are: 

The upper left and lower right entries of R -~ are 
2 - 1  (1 - r 2 2 )  - 1 and ( 1 -  r e_ 1,p) , respectively. The corre- 

lation matrix inverse is the same form as that  for an 
autocorrelation series (Johnston 1984, p 311) if all 
markers are equally spaced. 

Finally, the vector a is needed. It will first be as- 
sumed that  there is only one trait locus, Q, and the 
elements of a will depend on its position. To confirm that  
the solutions are not  affected by the different type of 
diagonal terms at the extremes, two situations can be 
examined. Assume first that  the trait locus lies between 
markers 1 and 2 at recombination distances ct and c 2 
from each, and with correlations r 1 and r 2 between each 
trait locus and Q. F rom the multipticative relation of 
correlations 

r~r2 = t"12 and 

a' = ~(r 1, r2 ,  F2r23  , r2  r23 r 3 4 , . . . ) .  

It can then be confirmed that the product R -  ~a leads to 
a vector 

p = ~/(1 - r2r 2) 

�9 r 1 (1 - -  r~) 

r2(1 - r~) 

0 

Z 

0 

all terms except f l l  and fi2 being zero. Secondly, assume 
that Q is between loci 3 and 4. Then, with similar definitions 
for r 3 and r,, 

a '  = c~(r 12 r23 r3,  r23 r3,  r3,  r4 ,  r 4 r 4 5 ,  �9 �9 - ) 

and the third and fourth elements of II are found to have a 
similar form to those above. In general, all nonflanking 
markers have zero coefficients, and those for flanking 
markers i and j take the form 

fi, = :~r~(1 - r~)/(1 - r 2 rf) 

= 4eQ[1 - cj] [1 - 2ci]/(1 - [1 - 2cl] 2 E1 - 2cj32). 

The extension to more than one trait locus is straight- 
forward provided there is no epistasis. The observed 
marker/ trai t  covariance vector can then be considered 
as the sum of contributions from each trait locus, and 
the solution is similarly the sum of separate [I vectors for 
each. So for two trait loci: 

- - -  

( 1 -  r/2_ r 2 1,i i , i+ l ) (1- r /2-J , i ) - l (  l - r 2  ~-1 and i,i+l} , 

- ri.i+ 1/( 1 - r2i+ 1), respectively. 

1~* = R -  1 (a 1 + a2  ) = [I 1 + [ig. 

T h u s ,  provided that trait loci are separated by at least 
two marker loci, their effects can be separately es- 
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timated, in spite of the fact that they themselves may be 
linked. When no marker intervenes, their effects are 
amalgamated as an apparent single locus. 

An estimate of a single-locus trait effect ~ is obtained 
as b~ + b j, which has expected value 

fli + fij = c~(ri + rj)/(1 + rir fl 

= c~(1 - c i - c f l / (1  - c i - cj + 2cicj) ,  

for Q in the interval defined by loci i andj. The resulting 
downward bias in & for a locus flanked by markers i and 
j is given by 

2 c i c j ( 1  - c i - c~ + 2cic fl = 2 c i c J ( 1  - cij ). 

The bias is small, being only 2.4% when cz = cj = 0.1 and 
12% when they are both 0.2. 

The asymptotic variance of & for a locus flanked by 
markers i and j is: 

Var(&) = - -  
20  -2 

n(1 + rij ) 
[-(1 + r i j r  2 1.i)/(1 - -  r 2 1,i) 

2 2 + (1 + rij rio + 1)/(1 - rj,j + 1)]. 

In terms of recombination frequencies, this variance is 

I 1 1 
Var(&) = (a2/n) 2 c i _ l , i ( 1  - -  C i _ l , i )  -~- 2cjj+ 1 (1 -- cj,j+,) 

2(1 --2cia) ~ 

(1 - cij) _]" 

This quantity has some unexpected properties, being 
relatively invariant to changes in c i and c j, but strongly 
affected by the distance of the nearest distal markers 
(c i -1 , i  and cj,j+ 1). For cij = 0.2, the coefficient of (aZ/n) 
drops from 50 to 10 as these distal recombination 
distances increase from 0.02 to 0.1. When there is no 
linkage to distal markers, then Var(60 = 4(1 + rij) -1" 
0-2/n = 2(1 - cij ) -  1 ~r2/n. From the point of view of esti- 
mating c~, it is therefore important to eliminate close 
distal markers once flanking markers have been identi- 
fied. 

Discussion 

The inclusion of parameters for location and gene effects 
in flanking marker regression models typically leads to 
non-linear forms that either have to be solved by iter- 
ation or transformed into linear forms that are not 
appropriately constrained (Knapp et al. 1990). One sug- 
gested solution has been to preassign values for the 
location parameter and search for the model with the 

lowest residual sum of squares (Haley and Knott 1992; 
Martinez and Curnow 1992). While these models ex- 
plicitly deal with one trait locus, Moreno-Gonzalez 
(1992a, b) assumed that trait loci lay midway between 
flankers so as to provide a linear model that could be 
generalized to multiple loci. However, this approach 
requires the markers to be preassigned into pairs to 
potential flankers. 

The important distinction of the present regression 
model is that no parameters accounting for gene effect 
or location are explicitly included, and it can be con- 
sidered a special property of the linear arrangement of 
genes along the chromosome that the usual regression 
coefficients can be simply interpreted in these terms. 
Only markers immediately flanking trait loci are ex- 
pected to have non-zero values, offering a simple means 
of recognizing and testing for active chromosome seg- 
ments. In principle, the approximate position of the trait 
locus within this segment can also be estimated when 
double crossovers can be ignored. With complete inter- 
ference, the sum of the coefficients is an unbiased es- 
timator of the effect of the trait locus they enclose, and 
there is only a small bias when there is no interference 
and reasonably dense marking. Provided each trait 
locus is flanked by its own pair of markers, the magni- 
tude and sign of its effect can be estimated independently 
of those of all others even when these are linked in a 
complex system. 

The simplicity of the regression model allows various 
conventional methods of testing for the presence of trait 
loci, although not all properties have been examined in 
this specific application. The t-tests for individual coeffi- 
cients or for adjacent pairs have different properties with 
respect to the occurrence of false positives and negatives 
and need to be critically evaluated to find a system that 
offers the optimum balance. 

The theory has been formulated in terms of individ- 
uals in an F 2 family. However, the essential property on 
which the method depends is the form of the matrix R 
and is directly applicable to any population for which 
the additive correlation between linked loci is a simple 
function of (1-2c). Apart from F 2 per se, this applies to 
any generation in which separate plant populations are 
derived from each F z individual, such as seed bulks or 
testcrosses. It also applies to backcrosses and doubled 
haploids, but not to populations of individuals in later 
generations of selfing. In particular, the correlation 
among recombinant inbred lines is known to be 
(1-2c)/(1 + 2c). Even in these cases the regression is 
likely to be useful, although the specific properties of 
zero distal coefficients and unbiased estimates are no 
longer expected. 

The estimated effect in regression of trait values on 
coded marker variables is the least squares linear effect 
of an allele substitution at the trait locus Q, which is 
equal to one-half the difference between homozygotes. It 
was shown by Mather and Jinks (1982) that a domi- 
nance effect at a locus in F 2 is independent of the 
additive effect, and it can similarly be shown that the 



dominance effect at a trait locus is independent of the 
linear allele dose at a marker linked to it. The same is 
true of epistatic effects, so whereas there are correlations 
between effects of similar type [all squares and products 
of (1-2c) terms], those between effects of different types 
are zero. Hence, although these effects are a source of 
error, the estimation of additive effects by regression 
remains unbiased. There should be no difficulty in prin- 
ciple in extending the regression model to allow estima- 
tion of dominance effects if required�9 However, in much 
of breeding practice only additive and additive epistatic 
effects can be selected for, and in this context dominance 
effects are of limited interest. This is clearly true in 
species in which a homozygous line variety is the objec- 
tive, and in corn (Zea mays L.) and other species poten- 
tial hybrid parents are compared using testcrosses in 
which no dominance deviation is expressed. 

While the method offers a simple means of labell- 
ing and selecting trait alleles, a further attraction is its 
direct relationship to quantitative selection theory, 
which is almost entirely formulated in terms of least 
squares linear models (Falconer 1989). In fact, the re- 
gression equation itself is an optimum index for marker- 
based selection and leads very simply to marker-trait 
indices of the type discussed by Lande and Thompson 
(1990). 

Summary 

Multiple regression is shown to be a method of estab- 
lishing marker-trait associations to estimate additive 
effects either for F 2 per se or in crosses to a tester. In this 
regression, each marker is represented by its own vari- 
ate, coded to correspond to allele frequency. The 
method is less concerned with precise trait-gene location 
than with estimation of additive effects. Regression has a 
simple, intuitive interpretation, being the product of the 
inverse of the marker correlation matrix with the vector 
of simple linear regression estimators�9 The large-sample 
solutions are given for regression on two flanking 
markers and for the general no-interference case, along 
with variances of these asymptotic estimators. This 
work should help breeders apply molecular marker 
technology to their practice. 

Appendix 

The  correlat ion matr ix  R and  its inverse for the  (no-interference) or 
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